An alien space rock found in Egypt could be the first evidence on Earth of a rare supernova explosion, scientists say
- Scientists think they have found the first evidence on Earth of a supernova explosion
- They studied the extraterrestrial stone of Hypatia which was found in Egypt in 1996
- The chemical composition and structure of the rock suggest that it contains supernova gas
- Over the course of billions of years this gas and dust would form Hypatia’s parent body
<!–
<!–
<!– <!– <!–
<!– <!–
An extraterrestrial rock that was found in Egypt More than 25 years ago may be the first evidence on Earth of a rare supernova explosion, the scientists said.
The researchers analyzed the Hypathia stone and found that its chemical composition and structure suggest that it contains dust fragments and a cloud of gas surrounding a “standard candle” (or type Ia) supernova.
These stellar outbursts, which are among the most energetic in the Universe, occur when a dense white dwarf star devours another nearby star.
The mix of dust and gas from such a supernova would gradually morph into a solid over billions of years, experts said, before forming the parent body from which Hypatia came.

Explosive discovery: Hypathia extraterrestrial stone, which was found in Egypt more than 25 years ago, may be Earth’s first evidence of a rare supernova explosion, scientists say

The researchers analyzed the Hypathia stone (pictured) and found that its chemical composition and structure suggest that it contains dust fragments and a cloud of gas surrounding a Type Ia supernova.
“In a way, we could say, we caught a supernova AI explosion in the act, because the gas atoms from the explosion were captured in the surrounding dust cloud, which eventually formed Hypatia’s parent body.” Said geochemist Jan Kramers, of the University of Johannesburg in South Africa.
The researchers analyzed a tiny sample of Hypatia for clues as to where the stone had been and how it formed.
They found it had unusually low levels of silicon, chromium, and manganese, which meant the rock was unlikely to have formed in the inner Solar System.
It also had high levels of copper, sulfur, iron, phosphorus, and vanadium.
Scientists said this trick was very different from any object found in our corner of the Milky Way.
Their analysis also ruled out the possibility that the stone could have formed from a red giant star or a type II supernova, with the latter ruled out because the rock had too much iron compared to silicon and calcium.
Therefore, experts believe they are the remnants of a Type Ia supernova.
“If this hypothesis is correct, the Hypatia stone would be the first tangible evidence on Earth of a Type Ia supernova explosion,” Kramers said.
“Perhaps equally important, it shows that a single anomalous packet of dust from outer space could actually be incorporated into the solar nebula from which our Solar System formed, without being completely mixed.”

The researchers found that the rock had unusually low levels of silicon, chromium and manganese, which meant it was unlikely to have formed in the inner Solar System.

Experts analyzed 15 elements in the stone and found that a corresponding number would have been expected if the object had come from a dense explosion of a white dwarf.
The researchers analyzed 15 elements in the stone and found that a number of them would have been expected to match if the object had come from a dense explosion from a white dwarf.
However, six other elements – chlorine, potassium, aluminum, phosphorus, zinc and copper – did not fit in a Type Ia supernova model.
Experts said they have a possible explanation for this.
“Since a white dwarf star is formed from a dying red giant, Hypatia may have inherited these element proportions for the six elements from a red giant star,” Kramers said.
‘This phenomenon has been observed in white dwarf stars in other research.’
The research was published in the journal Icarus.
Announcement